語音識(shí)別技術(shù)原理簡介

2013-08-21 09:54 來源:電子信息網(wǎng) 作者:蒲公英

語音識(shí)別技術(shù)原理簡介

自動(dòng)語音識(shí)別技術(shù)(Auto Speech Recognize,簡稱ASR)所要解決的問題是讓計(jì)算機(jī)能夠“聽懂”人類的語音,將語音中包含的文字信息“提取”出來。ASR技術(shù)在“能聽會(huì)說”的智能計(jì)算機(jī)系統(tǒng)中扮演著重要角色,相當(dāng)于給計(jì)算機(jī)系統(tǒng)安裝上“耳朵”,使其具備“能聽”的功能,進(jìn)而實(shí)現(xiàn)信息時(shí)代利用“語音”這一最自然、最便捷的手段進(jìn)行人機(jī)通信和交互。

語音識(shí)別技術(shù)所面臨的問題是非常艱巨和困難的。盡管早在二十世紀(jì)五十年代,世界各國就開始了對(duì)這項(xiàng)技術(shù)孜孜不倦的研究,特別是最近二十年,國內(nèi)外非常多的研究機(jī)構(gòu)和企業(yè)都加入到語音識(shí)別技術(shù)的研究領(lǐng)域,投入了極大的努力,也取得了豐碩的成果,但是直到今天,距離該技術(shù)得到完美解決還存在著巨大的差距,不過這并不妨礙不斷進(jìn)步的語音識(shí)別系統(tǒng)在許多相對(duì)受限的場合下獲得成功的應(yīng)用。

如今,語音識(shí)別技術(shù)已經(jīng)發(fā)展成為涉及聲學(xué)、語言學(xué)、數(shù)字信號(hào)處理、統(tǒng)計(jì)模式識(shí)別等多學(xué)科技術(shù)的一項(xiàng)綜合性技術(shù)?;谡Z音識(shí)別技術(shù)研發(fā)的現(xiàn)代語音識(shí)別系統(tǒng)在很多場景下獲得了成功的應(yīng)用,不同任務(wù)條件下所采用的技術(shù)又會(huì)有所不同。下圖是在一個(gè)相對(duì)通用的任務(wù)條件下的語音識(shí)別系統(tǒng)示意圖。語音識(shí)別系統(tǒng)構(gòu)建過程整體上包括兩大部分:訓(xùn)練和識(shí)別。訓(xùn)練通常是離線完成的,對(duì)預(yù)先收集好的海量語音、語言數(shù)據(jù)庫進(jìn)行信號(hào)處理和知識(shí)挖掘,獲取語音識(shí)別系統(tǒng)所需要的“聲學(xué)模型”和“語言模型”;而識(shí)別過程通常是在線完成的,對(duì)用戶實(shí)時(shí)的語音進(jìn)行自動(dòng)識(shí)別。識(shí)別過程通常又可以分為“前端”和“后端”兩大模塊:“前端”模塊主要的作用是進(jìn)行端點(diǎn)檢測(去除多余的靜音和非說話聲)、降噪、特征提取等;“后端”模塊的作用是利用訓(xùn)練好的“聲學(xué)模型”和“語言模型”對(duì)用戶說話的特征向量進(jìn)行統(tǒng)計(jì)模式識(shí)別(又稱“解碼”),得到其包含的文字信息,此外,后端模塊還存在一個(gè)“自適應(yīng)”的反饋模塊,可以對(duì)用戶的語音進(jìn)行自學(xué)習(xí),從而對(duì) “聲學(xué)模型”和“語音模型”進(jìn)行必要的“校正”,進(jìn)一步提高識(shí)別的準(zhǔn)確率。

語音識(shí)別技術(shù)發(fā)展歷史及現(xiàn)狀

語音識(shí)別的研究工作大約開始于20世紀(jì)50年代,當(dāng)時(shí)AT&T Bell實(shí)驗(yàn)室基于共振峰提取技術(shù)實(shí)現(xiàn)了第一個(gè)可識(shí)別十個(gè)英文數(shù)字的語音識(shí)別系統(tǒng)——Audry系統(tǒng)。

60年代,計(jì)算機(jī)的應(yīng)用推動(dòng)了語音識(shí)別的發(fā)展。這時(shí)期的重要成果是提出了動(dòng)態(tài)時(shí)間規(guī)劃(DP)和線性預(yù)測分析技術(shù)(LPC),其中后者較好地解決了語音信號(hào)產(chǎn)生模型的問題,對(duì)語音識(shí)別的發(fā)展產(chǎn)生了深遠(yuǎn)影響。

70年代,語音識(shí)別領(lǐng)域取得了較大進(jìn)展。在理論上,LP技術(shù)得到進(jìn)一步發(fā)展,動(dòng)態(tài)時(shí)間歸正技術(shù)(DTW)基本成熟,特別是提出了矢量量化(VQ)和隱馬爾可夫模型(HMM)理論。在實(shí)踐上,實(shí)現(xiàn)了基于線性預(yù)測倒譜和DTW技術(shù)的特定人孤立語音識(shí)別系統(tǒng)。

80年代,MFCC的參數(shù)提取技術(shù)和HMM模型的深入使用使得語音識(shí)別技術(shù)得到進(jìn)一步的發(fā)展,語音識(shí)別的問題逐步在理論體系上得到了比較完整和準(zhǔn)確的描述,同時(shí)在實(shí)踐上又逐步研發(fā)出效率較高的解決算法。

90年代以來,在美國國防部的Darpa測試、Ears計(jì)劃、近期的Gales計(jì)劃,以及我國863計(jì)劃等推動(dòng)下,一大批高水平的研究機(jī)構(gòu)和企業(yè)加入到語音識(shí)別的研究領(lǐng)域,極大地推動(dòng)了語音識(shí)別技術(shù)的發(fā)展和應(yīng)用。語音識(shí)別系統(tǒng)已經(jīng)從過去的小詞匯量、孤立詞識(shí)別、特定人識(shí)別、安靜環(huán)境等簡單任務(wù)逐步發(fā)展到大詞匯量、連續(xù)語音、非特定人、噪聲環(huán)境下的識(shí)別任務(wù),從單純的語音識(shí)別任務(wù)發(fā)展到語音翻譯任務(wù),從實(shí)驗(yàn)室系統(tǒng)走向商用系統(tǒng)。

語音識(shí)別

一周熱門