聲表面波(SAW)技術是一門新興熱門研究課題之一,國內外已有溫度、壓力、加速度等傳感器的相關報道。SAW壓力傳感器借助于它無以倫比的性能,諸如:1)數(shù)字號輸出;2)高靈敏度、高分辨力、抗干擾能力強;3)易于大規(guī)模集成。正是由于這些自身的優(yōu)越性,它有著廣泛的應用領域。但美中不足的是SAW壓力傳感器對環(huán)境的要求比較苛刻,SAW振蕩器輸出頻率信號隨著壓力、溫度、磁場等外界因素變化而變化,特別是溫度的影響是測量誤差的主要來源,為保證SAW壓力傳感器高準確度和高靈敏度測量,必須進行有效的溫度補償。本文將神經網絡和模糊控制技術相結合,對SAW壓力傳感器進行智能化溫度補償,通過此方法進行的改進,使SAW壓力傳感器能更好地應用到工程領域。
1 溫度補償方案
在傳統(tǒng)的溫度補償中,例如:硬件補償和軟件補償2種方法。但存在著補償電路漂移、局部最優(yōu)、精度不夠等缺點,無法滿足SAW壓力傳感器補償要求。鑒于此種情況,本文采用了神經模糊控制方法,對SAW壓力傳感器進行智能溫度補償。
神經模糊控制是一種用神經網絡實現(xiàn)的模糊控制的方法。在形式結構上是用多點網絡實現(xiàn)的模糊映射。而神經網絡的非線性和可訓練性說明它可以實現(xiàn)任何一種映射關系。因此,本文利用神經網絡對知識的表達機理,通過學習訓練,實現(xiàn)控制規(guī)則基記,從而實現(xiàn)模糊輸入-模糊輸出的映射。神經模糊控制對SAW壓力傳感器溫度-壓力補償模型見圖1。
在SAW壓力傳感器后面接神經模糊控制器,把傳感溫度T作為輸入,則神經模糊控制器能直接輸出被測量。