利用高速信號(hào)鏈提高醫(yī)學(xué)成像質(zhì)量
就數(shù)據(jù)轉(zhuǎn)換器而言,醫(yī)療產(chǎn)業(yè)是一個(gè)不斷增長(zhǎng)市場(chǎng)。在將溫度、圖像和聲音轉(zhuǎn)換成患者監(jiān)控和診斷過(guò)程中處理和使用的數(shù)字信息時(shí),我們就必須要使用高速數(shù)據(jù)轉(zhuǎn)換器。特別是對(duì)于 10 比特及更精度的設(shè)備來(lái)說(shuō),醫(yī)療成像設(shè)備呈現(xiàn)出一個(gè)快速增長(zhǎng)的市場(chǎng)機(jī)遇。三個(gè)主要細(xì)分市場(chǎng)包括超聲波、磁共振成像 (MRI),計(jì)算機(jī)斷層掃描術(shù) (CT),以及正電子放射斷層掃描術(shù) (PET)。技術(shù)進(jìn)步帶來(lái)了更快、更高精度的成像,以及更高的患者安全性。
與所有非常依賴(lài)科技進(jìn)步的行業(yè)一樣,醫(yī)學(xué)成像設(shè)備廠商不得不持續(xù)改進(jìn)他們的產(chǎn)品——主要是改進(jìn)系統(tǒng)的成像質(zhì)量。無(wú)論是超聲波反射聲波、核磁共振成像 (MRI) 磁場(chǎng)擾動(dòng)還是正電子發(fā)射斷層成像 (PET) 的正電子發(fā)射,大多數(shù)醫(yī)學(xué)成像技術(shù)均需要患者信號(hào)接收傳感器陣列。提高成像質(zhì)量的最直接方法就是擴(kuò)大傳感器陣列規(guī)模。但是由于為設(shè)備添加了更多的傳感器,因此將信號(hào)傳輸至處理引擎的信號(hào)鏈就必須增加電子器件。與此同時(shí),廠商還必須提高其系統(tǒng)標(biāo)準(zhǔn),包括特定電子組件的尺寸、功耗以及成本。系統(tǒng)某一方面的性能提升也許會(huì)給其他方面帶來(lái)挑戰(zhàn)。僅僅增加傳感器和信號(hào)鏈就可能會(huì)引發(fā)包括系統(tǒng)尺寸及功耗增大在內(nèi)的不利影響,就更不要說(shuō)額外增加多個(gè)芯片的更多成本了。但是,用于醫(yī)學(xué)成像系統(tǒng)的最新 一代信號(hào)鏈組件使醫(yī)療系統(tǒng)設(shè)計(jì)人員既能改善信號(hào)鏈密度和功耗,同時(shí)又不影響動(dòng)態(tài)性能——即系統(tǒng)同時(shí)實(shí)現(xiàn)更高的成像質(zhì)量、更低 的功耗及更小的尺寸。
醫(yī)學(xué)成像接收機(jī)的組成元件
對(duì)于大多數(shù)典型醫(yī)學(xué)成像應(yīng)用來(lái)說(shuō),傳感器陣列的每個(gè)元件都需要其自己的信號(hào)鏈從而將傳感器的小信號(hào)響應(yīng)傳送并轉(zhuǎn)換成“1”以進(jìn)行數(shù)字信號(hào)處理。因?yàn)槌上駪?yīng)用傳感器的信號(hào)響應(yīng)性質(zhì)不盡相同,因此信號(hào)轉(zhuǎn)換過(guò)程中通常離不開(kāi)三個(gè)主要有源組件。首先是低噪聲放大器 (LNA),其主要功能是將模擬系統(tǒng)的噪聲系數(shù) (NF) 盡可能地固定在一個(gè)較低水平。在 LNA 之后是對(duì)信 號(hào)進(jìn)行增益的另一個(gè)放大級(jí),以實(shí)現(xiàn)與末級(jí)(即模數(shù)轉(zhuǎn)換器 (ADC))輸入范圍的最佳匹配。
諸如 MRI 的應(yīng)用(其通常在信號(hào)振幅方面擺幅不大)可以使用固定增益級(jí)。但是,如果系統(tǒng)在信號(hào)強(qiáng)度(如超聲波)方面存在很大差異,那么該系統(tǒng)則需要可變?cè)鲆娣糯笃? (VGA),并且需要在 ADC 之前使用可編程增益放大器 (PGA),以匹配 ADC 的滿量程輸入并最大化信噪比 (SNR)。經(jīng)過(guò) ADC 以后,模擬信號(hào)將被轉(zhuǎn)換成數(shù)字信號(hào)并準(zhǔn)備發(fā)送至系統(tǒng)的數(shù)字信號(hào)處理器 (DSP),該過(guò)程一般通過(guò)現(xiàn)場(chǎng)可編程門(mén)陣列 (FPGA) 完成進(jìn)入末級(jí)的信號(hào)處理和轉(zhuǎn)換。對(duì)于 MRI 而言,在 LNA 和放大器之間也可能有一系列混頻級(jí),以將磁體射頻 (RF) 能量轉(zhuǎn)換成為低頻能量。因?yàn)槊總€(gè)元件都需要三個(gè)或更多器件,傳感器每增加一倍,僅接收信號(hào)鏈的模擬組件數(shù)量就可能需要增加到原來(lái)的 6 到 10 倍!另外,功耗要求的增加就更不用說(shuō)了。難怪系統(tǒng)設(shè)計(jì)人員總是不斷要求組件供應(yīng)商對(duì)其新型集成電路 (IC) 設(shè)計(jì)進(jìn)行創(chuàng)新,以解決尺寸相關(guān)的問(wèn)題。集成:更多信號(hào)鏈、空間更小、功耗更低
一個(gè)主要的改進(jìn)方面就是將越來(lái)越多的模擬有源器件集成在一個(gè)芯片上,進(jìn)而減少系統(tǒng)所需的 IC 數(shù)量。就一個(gè)典型的超聲波接收鏈而言,每個(gè)傳感器可能都需要四個(gè)器件,其中三個(gè)為放大器。憑借現(xiàn)代設(shè)計(jì)與工藝,IC 供應(yīng)商現(xiàn)在可提供將LNA、VCA 以及 PGA 集成在一個(gè)可變?cè)鲆娣糯笃鞯钠骷?,與分立解決方案相比最終將芯片數(shù)量減少了三分之一。另外,當(dāng)前的諸多設(shè)計(jì)都在單個(gè)芯片中集成了多個(gè) VGA 通道,從而使設(shè)計(jì)更先進(jìn)一步。TI 的新型 VCA8500 便是一個(gè)極好例子,在采用了 64 引腳 QFN 封裝的單個(gè) IC 中就集成了 8 個(gè)VGA 通道。通過(guò)緊挨 PGA 集成一個(gè)低通抗混淆濾波器,實(shí)現(xiàn)了無(wú)需額外無(wú)源或有源外部組件的情況下 VGA 輸出可以直接進(jìn)入 ADC 的輸入,從而節(jié)省更多的板級(jí)空間。利用這種方法,該器件領(lǐng)先于其他同類(lèi)產(chǎn)品。請(qǐng)注意,在圖 1 中,如連續(xù)波 (CW) 開(kāi)關(guān)矩陣和鉗位電路等醫(yī)療成像系統(tǒng)所特有的其他功能模塊也都集成到了該器件中。
圖 1 VCA8500的功能模塊圖